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A B S T R A C T   

Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them un
available for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, 
and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. 
Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were 
analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard 
procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by 
fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p <
0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin 
content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger 
millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour 
increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, 
ranging from 15.4–40.0 %, 26.8–50.8 %, and 60.9–88.5 %, respectively. The results suggest that traditional 
fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously 
increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.   

1. Introduction 

Finger millet (Eleusine coracana) is a small-seeded cereal of Ethiopian 
origin, grown widely in the semi-arid tropics and subtropics of the world 
(Ramashia et al., 2018; Sood et al., 2016). It is the sixth major crop in 
Ethiopia following Teff, wheat, maize, sorghum, and barley (CSA, 
2021). Specifically, the country produces more than 12 million quintals 
of finger millet, out of which 55 % is produced in the Amhara region. 

Finger millet is a resilient crop, offering a good grain yield even in 
conditions where other crops fail to produce a reasonable yield. It rep
resents hence a food crop included in food security plans for drought- 
prone areas (Adekunle et al., 2012). However, the crop remains 
underutilized in Ethiopia. Nutritionally, finger millet is a good source of 
carbohydrates, proteins, sugars, starch, and dietary fiber, being partic
ularly rich in essential minerals, calcium, and iron (Chandra et al., 2016; 
Ramashia et al., 2019). Hence, in developing countries like Ethiopia, 
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where severe iron deficiency is reported, incorporating finger millet in 
the common food basket may help alleviate health issues such as anemia 
(Gebre, 2019). Although finger millet has a significant potential of being 
an important source of minerals (i.e. iron, zinc, calcium, etc.), like other 
cereals, it contains a high amount of antinutritional components such as 
phytic acid, phenolic compounds, and condensed tannins. Antinutrients 
are among the major causes of iron and zinc deficiency (Baye et al., 
2015) by reducing mineral bioavailability. They also impair protein and 
starch digestibility (Pragya, 2012). The utilization of conventional food- 
processing techniques such as fermentation can enhance the bioavail
ability of micronutrients and nutrient digestibility (Devisetti et al., 2014; 
Gabaza et al., 2018b; Saleh et al., 2013; Séye et al., 2018; Singh & Sarita, 
2018). Injera, a traditional fermented flatbread, is the most widely 
consumed foodstuff in Ethiopia. While Injera is widely produced from 
Teff (Eragrostis teff), finger millet based Injera is also a staple in several 
parts of Ethiopia. However, literature on the effect of fermentation on 
finger millet based Injera is scarce. This study therefore aimed to eval
uate the effect of traditional fermentation on the nutritional, antinutri
tional, and mineral bioaccessibility of finger millet based Injera. 

2. Materials and methods 

2.1. Finger millet Injera preparation 

Sample areas for Injera recipe identification were selected based on 
the communities’ wide experience in consuming finger millet-based 
Injera. To assess if there are differences in preferences for finger millet 
varieties and recipes between producers and buyers, two nearby areas 
from Bahir Dar city, Dangila and Zege districts were included in the 
study. While communities in Dangishita Kebele of Dangila district are 
finger millet producers, communities from Zege are generally charac
terized as buyers. Dangila district, Dangishita sub-district (Kebele) is 
located approximately 90 km away from Bahir Dar, the capital city of 
the Amhara region, Ethiopia, and Zege is located 30 km away from Bahir 
Dar to the west. 

The identification of finger millet Injera recipes involved significant 
contributions from women in the two different communities during 
focus group discussions. The entire process of Injera preparation from 
finger millet was also observed in local households (Fig. 1). A total of 12 
women (randomly selected) from each community participated in the 
data collection process, providing information on the type of finger 
millet preferred for Injera preparation, the practice of mixing finger 
millet with other cereals, the fermentation period, and the practice of 
back slopping. 

Producers prefer light brown (brown) finger millet for Injera, while 
buyers prefer the white-colored varieties (Fig. 2). The preference for 
light brown finger millet for Injera preparation stems from the fact that 
Injera prepared from this type of finger millet is soft and has a better 
appearance compared to the other types of finger millet. On the con
trary, the preference for the white-colored variety by the buyers or Zege 
community relates to the fact that Injera from this variety is comparable 
in texture and appearance with Injera prepared from Teff (the cereal 
most widely used for Injera preparation). Unlike buyers, mixing finger 
millet with other cereals, especially maize (Zae Mays), is a common 
practice by finger millet producers as maize is also one of the major 
cereals produced by this community. Women from the producer com
munity reported Injera preparation exclusively from finger millet, as 
well as its mixing with maize, which is readily available and relatively 
cheap. The differences in the amount of maize used for Injera prepara
tion among producer communities correspond to differences in wealth, 
as relatively poor households tend to increase the ratio of maize added. 

Two recipes from finger millet producing communities and one from 
buyers were identified. The major difference between the two recipes 
from producer communities is the proportion of maize mixed with finger 
millet for Injera preparation; some use a 1:1 ratio for Injera preparation, 
while others use a 2:1 ratio. An additional difference is associated with 
the stage at which the two cereals are mixed. When women use a 1:1 
ratio, the cereals are milled separately. Maize dough is prepared 
initially, and finger millet is added on the third fermentation day. On the 
other hand, in the 2:1 ratio, flours are milled together and the dough is 

Fig. 1. Flow diagram of the preparation of light brown finger millet based Injera.  
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prepared from the blended flour, and another batch of blended flour is 
added on the third fermentation day. In both cases, the dough is ready 
for baking after the fourth day of fermentation and can continue to be 
used up to the seventh day. Back-slopping is not a common practice 
among producers. 

Unlike producers, finger millet buyers prepare finger millet dough 
and use back slopping (locally called ’Ersho’) to hasten the fermentation 
process. On the fourth day, the dough is converted to batter by adding 
water and is ready for baking. It was also reported that the dough can be 
left fermented for up to 7 days and Injera is subsequently baked as 
needed. 

2.2. Injera preparation in the laboratory and sample preparation 

To reproduce the traditional Injera preparation process used by the 
the local women in the laboratory, finger millet and maize seeds were 
purchased and thoroughly cleaned to remove foreign matter such as 
stones, dust, and straw. The maize was manually decorticated and 
winnowed. Then, the white finger millet, light brown finger millet, 
maize, and the combined grain of light brown finger millet and maize 
(1:2 ratio) were milled in local community milling units that use me
chanical millers to obtain flour to the fineness level traditionally used for 
Injera preparation. Finally, the flour was sieved using a 500-µm sieve and 
used for Injera preparation. 

The actual procedure of Injera preparation was fully performed in the 
Food Processing Laboratory of Chemical and Food Engineering Faculty, 
Bahir Dar Institute of Technology, Bahir Dar University following pro
cedures of producer communities from Dangishita subdistrict (Fig. 3) 
and of buyers from Zege (Fig. 4). 

From each recipe, fermented dough samples were taken at 24-hour 
fermentation time intervals and freeze-dried (Coolsafe 55–9, Scanvac, 
Lynge, Denmark). Similarly, Injera samples were also freeze-dried and 
ground in a grain miller to a fine powder and stored in sealed bags at −
20 ◦C until needed for analysis. Samples for mineral content analysis and 
mineral bioaccessibility determination were transported to Greece 
under cooled conditions and immediately frozen at − 20 ◦C at the Lab
oratory of Environmental Chemistry of the Department of Chemistry of 
the National and Kapodistrian University of Athens. 

2.3. Nutrient analysis 

2.3.1. Proximate composition 
The proximate composition of raw flour, fermented dough flour, and 

Injera samples was determined. Moisture, crude protein, crude fiber, 
crude fat, and total ash contents of the samples were determined 
following the AOAC method (2005) and the total carbohydrate was 
estimated by the weight difference method (Monro & Burlingame, 
1996). Gross energy was determined by multiplying the percentage of 

crude protein, crude fat, and carbohydrate by factors 4, 9, and 4, 
respectively, and the estimation was recorded as kcal/100 g (Nguyen 
et al., 2007). 

2.3.2. Mineral composition analysis using ICP-OES 
The mineral content of the grain flour and Injera samples was 

determined according to the method of Grigoriou et al. (2022), slightly 
modified. The samples (0.1 g) were wet digested with the addition of 
HNO3 acid 65 % supra pure, employing a microwave digester (Multi
wave Go Plus, Anton Paar, Graz, Austria) and subsequently diluted to a 
final volume of 25 mL with Milli-Q water of 18.2 MΩ.cm (Millipore, 
Bedford, MA, USA). 

The determination of Ca, Fe, and Zn was performed by ICP-OES, with 
a Perkin Elmer Optima 2100DV (Perkin Elmer, USA) instrument. Limits 
of detection (LODs) were calculated by multiplying the standard devi
ation of seven replicate samples prepared at an approximately low 
concentration by 3.14 (USEPA, 1997). LODs in µg/g of dry weight were 

Fig. 2. Finger millet grain (1) and flour (2): white (a1, a2); light brown (b1, b2).  

Fig. 3. Flow diagram of Injera preparation from light brown finger millet and 
maize in Dangishita Kebele, Dangila, Ethiopia. 
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calculated equal to 0.140 for Ca, Fe, and Zn. 
For quality assurance purposes, within each batch of samples, at least 

one procedural blank was included. For the accuracy and precision of 
the analysis, a certified reference material (CRM) BCR 191 (brown 
bread) was analyzed and recoveries for Ca, Fe, and Zn were calculated at 
100 ± 10 %. 

2.3.3. Determination of bioaccessible calcium (Ca), iron (Fe) and zinc (Zn) 
The Ca, Fe, and Zn bioaccessibility of Injera samples was determined 

according to the method presented by Khoja et al. (2020) and Glahn 
et al. (1998), simulating the gastrointestinal digestion system with some 
modifications. In a 15 mL tube, 1 g of sample was mixed with 10 mL of 
saline solution (140 mmol/L NaCl and 5 mmol/L KCl), vortexed, and left 
for 15 min. Then, the pH was adjusted to 2.0, using 1 M HCl. Subse
quently, 1 mL of pepsin (Sigma-P7012) (9.6 mg mL− 1) was added and 
vortexed. The sample was incubated at 37 ◦C in a shaking water bath 
(150 rpm) for 90 min. The pH of the samples was then adjusted to 7 
using 1 M NaOH. A 2.5 mL mixture of Bile extract (Sigma-B8631) and 
pancreatin (Sigma-P7545) (8.5 mg mL− 1 bile extract and 1.4 mg mL− 1 

pancreatin) were added. The solution was made up to 18 mL with saline 
solution and the samples were incubated at 37 ◦C for 90 min. At the end 
of the incubation period, samples were centrifuged at 1000 rpm for 10 
min, the supernatants were decanted, and 1 mL of the supernatant was 
taken into a 15 mL tube. The supernatant (l mL) was digested with HNO3 
acid 65 % supra pure in an oven at 60 ◦C overnight. The digested sample 
was diluted with distilled water and Ca, Fe, and Zn were analyzed by 
ICP-OES. 

2.4. Antinutrient analysis 

2.4.1. Phytic acid content 
The phytic acid content of the grain, fermented dough, and Injera 

samples was determined by using the Megazyme (Megazyme- KPHYT, 
Bray, Ireland) kit, following the protocol described by the manufacturer 
(McKie & McCleary, 2016). Flour samples were digested by hydro
chloric acid. The extracted phytate that was digested with phytase and 
alkaline phosphatase suspension was used to release phosphate from all 
the myoinositol phosphate forms. The phosphate released was measured 
using a modified colorimetric method at 655 nm. The phytic acid con
tent was calculated from the standard calibration curve (Supplementary 

Fig. 1) and expressed as milligrams of phytic acid per 100 g of sample. 

2.4.2. Condensed tannin content 
The condensed tannin content of the samples (finger millet and 

maize flour, fermented dough flour, and Injera) was estimated following 
the method reported by Dykes (2019) and Price et al. (1978) using a 
modified vanillin-HCl assay. The extract was prepared by mixing 0.3 g of 
sample flour with acidified methanol (1 % HCl in methanol) in a 
centrifuge tube. The mixture was subsequently vortexed and placed in a 
water bath for 20 min. The extract was then vortexed again and 
centrifuged at 4,000 g for 10 min. From the supernatant, 2 mL was taken 
and placed into two separate test tubes, 1 mL in each of the tubes. Then 
5 mL of Vanillin reagent was added to the fraction of 1 mL containing 
supernatant (labeled as “sample”) and 4 % HCl in methanol was added 
to the other fraction of 1 mL of the supernatant (labeled as “blank”). The 
mixtures were allowed to stand for 20 min before their absorbance 
reading at 500 nm using a spectrophotometer (G6860A, Agilent, 
Malaysia). A calibration curve was prepared using a standard solution of 
catechin (Supplementary Fig. 2). The tannin content was expressed as 
mg CE/100 g. 

2.5. Statistical analyses 

All the experiments were performed in triplicate, and data is shown 
as mean ± standard deviation (SD). Data were analyzed using analysis 
of variance (ANOVA), following the general model procedure of SPSS 
statistical software version 20, followed by Tukey’s post hoc test. The 
significance level was at p < 0.05. 

3. Results and discussion 

3.1. Effect of fermentation time on the proximate composition of finger 
millet based Injera 

The proximate composition of finger millet based Injera is presented 
in Table 1. The proximate composition of unfermented finger millet 
flour, maize flour, and finger millet-maize composite flour shows a 
significant difference with Injera samples. 

In the case of composite flour, the unfermented flour is significantly 
different in ash and crude fat content, with Injera prepared from 1:1 

Fig. 4. Flow diagram of white finger millet Injera preparation in Zege.  
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finger millet and maize composite flour (BFM). Likewise, the unfer
mented flour significantly increases in ash and crude protein, while it 
decreases in crude fiber compared with Injera prepared from 1:2 finger 
millet and maize composite flour (BF2M). The Injera prepared from 
BF2M flour has a significant increase, by 27.3 % protein content, 
compared to that of 7.4 g/100 g of the unfermented flour. However, the 
difference among different Injera samples is not significant. The 
increased protein concentration in the composite finger millet and maize 
Injera samples could be attributed to the synthesis of enzymes (such as 
amylases and proteases for the break down of starch into simple sugars 
and protein into amino acids respectively) by microorganisms and other 
newly formed proteins by fermentation, and the release of proteins from 
the degradation of other constituents such as antinutritional factors 
(Amankwah et al., 2009; Azeez et al., 2022; Ilowefah et al., 2017; 
Nkhata et al., 2018). The results show a slight increment in the protein 
content of other Injera samples when compared to their respective un
fermented flour. Mutshinyani et al. (2020) recorded a significant 
increment in crude protein value (7.1–9.4 % for light brown and 7.8–9.5 
% for dark brown) of finger millet after 96 h of fermentation. In contrast, 
it has also been noted that the protein content of pearl millet decreased 
by 4.5 % after undergoing spontaneous fermentation for 20 h during the 
preparation of Lohoh, a traditional Saudi Arabia leavened bread 
(Osman, 2011). 

The crude fiber content decreased by 25.0 %, 22.8 %, and 16.7 % in 
1:2 finger millet and maize composite flour (BF2M), white finger millet 
(WF), and brown finger millet (BF) Injera, respectively, compared to 
unfermented flour (P < 0.05). This is consistent with the result of pre
vious studies (Adegbehingbe, 2013; Mutshinyani et al., 2020) reporting 
a significant decrease in the fiber contents of finger millet and maize 
flours with fermentation time. The observed reduction in crude fiber 
value after fermentation could be due to the enzyme activities, which 
degrade the cell wall matrix during fermentation (Chinma et al., 2020; 
Ilowefah et al., 2017; Ogodo et al., 2018; Ojokoh & Bello, 2014). 

Except for brown finger millet (BF), the ash content of unfermented 
flour samples was significantly different across all Injera samples (P <
0.05). In the case of composite flour samples, the ash content increases 
with the increasing proportion of finger millet flour, possibly because of 
the high ash content of brown finger millet (Table 1). The increase in ash 
content could be attributed to the rearrangement of fiber composition or 
degradation of antinutritional substances (Ilowefah et al., 2017). 

The fat content of unfermented flour was significantly (p ≤ 0.05) 
different from that of all Injera samples except for 1:2 finger millet and 
maize composite flour (BF2M). However, no significant difference was 
recorded among Injera samples with fermentation time. As the propor
tion of brown finger millet flour in the flour composite increased, the 
crude fat content of the flour composite significantly decreased 

Table 1 
Effect of fermentation time on the proximate composition (g/100 g d.w.) of 
Injera prepared from finger millet and composite flour of finger millet-maize.  

Fermentation 
time (h) 

Ash 
(%) 

Crude 
Fat 
(%) 

Crude 
Protein 
(%) 

Crude 
Fibre 
(%) 

Total 
CHOs 
(%) 

Energy 
(Kcal/ 
100 g) 

Brown Finger millet (BF) Injera 
0 3.31 

±

0.07a 

1.84 
±

0.01b 

7.61 ±
0.22bc 

3.84 ±
0.05a 

87.2 
±

0.24b 

396.0 ±
0.28b 

96 3.21 
±

0.04ab 

2.17 
±

0.08a 

8.05 ±
0.05a 

3.20 ±
0.02b 

86.6 
±

0.15c 

398.0 ±
0.30a 

120 3.18 
±

0.04ab 

2.03 
±

0.09a 

7.80 ±
0.03ab 

2.84 ±
0.10c 

87.0 
±

0.09b 

397.4 ±
0.30a 

144 3.14 
±

0.05bc 

1.58 
±

0.07c 

7.38 ±
0.03c 

2.77 ±
0.02c 

87.9 
±

0.14a 

395.4 ±
0.16b 

168 3.01 
±

0.07c 

1.57 
±

0.03c 

7.58 ±
0.08bc 

2.60 ±
0.09c 

87.8 
±

0.02a 

395.8 ±
0.18b  

Maize (M) Injera 
0 1.22 

±

0.03b 

3.72 
±

0.11a 

8.86 ±
0.23a 

2.81 ±
0.06a 

86.2 
± 1.3a 

413.7 ±
7.1a 

96 1.34 
±

0.04ab 

2.71 
±

0.21c 

8.96 ±
0.00 a 

2.18 ±
0.17b 

87.0 
±

0.41a 

408.1 ±
2.7a 

120 1.37 
±

0.02ab 

2.86 
±

0.22c 

8.94 ±
0.11a 

1.93 ±
0.15bc 

86.9 
±

0.20a 

408.8 ±
0.77a 

144 1.37 
± 0.10 
a 

3.12 
±

0.20bc 

8.86 ±
0.22a 

1.63 ±
0.06c 

87.0 
±

0.40a 

410.2 ±
1.0a 

168 1.45 
±

0.03a 

3.37 
±

0.17ab 

8.49 ±
0.22a 

1.59 ±
0.03c 

86.2 
±

0.14a 

411.1 ±
1.0a  

1 Brown Finger millet: 1 Maize (BFM) Injera 
0 1.22 

±

0.03c 

3.72 
±

0.31a 

8.86 ±
0.23a 

2.79 ±
0.09a 

86.2 
± 1.3a 

413.7 ±
7.1a 

96 2.31 
±

0.01a 

3.17 
±

0.05b 

8.49 ±
0.25a 

2.77 ±
0.08a 

85.9 
±

0.30a 

407.3 ±
1.1ab 

120 2.22 
±

0.11a 

3.05 
±

0.09b 

8.67 ±
0.43a 

2.66 ±
0.02a 

87.4 
±

0.83a 

399.7 ±
2.2b 

144 2.21 
±

0.06a 

3.01 
±

0.19b 

8.69 ±
0.49a 

2.63 ±
0.01a 

86.3 
± 1.0a 

406.9 ±
2.3ab 

168 2.03 
±

0.05b 

2.77 
±

0.04b 

8.23 ±
0.21a 

2.54 ±
0.08a 

87.2 
±

0.34a 

402.7 ±
0.76b  

1 Brown Finger millet: 2 Maize (BF2M) Injera 
0 1.82 

±

0.07b 

3.20 
±

0.14b 

7.39 ±
0.19b 

2.98 ±
0.06a 

86.3 
± 3.1a 

415.3 ±
15a 

96 2.07 
±

0.06a 

3.72 
±

0.06b 

9.09 ±
0.35a 

2.21 ±
0.03b 

85.6 
± 2.2a 

407.7 ±
10a 

120 2.10 
±

0.04a 

3.84 
±

0.13b 

9.41 ±
0.02a 

2.13 ±
0.07b 

84.5 
± 2.5a 

410.9 ±
13a 

144 2.15 
±

0.06a 

3.90 
±

0.10b 

9.25 ±
0.30a 

2.07 ±
0.06b 

86.0 
±

0.38a 

402.9 ±
0.42a 

168 2.25 
±

0.10a 

3.69 
±

0.16b 

9.22 ±
0.44a 

2.10 ±
0.10b 

86.1 
±

0.52a 

403.0 ±
0.46a  

White Finger millet (WF) Injera  

Table 1 (continued ) 

Fermentation 
time (h) 

Ash 
(%) 

Crude 
Fat 
(%) 

Crude 
Protein 
(%) 

Crude 
Fibre 
(%) 

Total 
CHOs 
(%) 

Energy 
(Kcal/ 
100 g) 

0 2.47 
±

0.04a 

1.79 
±

0.05a 

7.68 ±
0.02a 

3.46 ±
0.01a 

88.1 
±

0.23a 

399.1 ±
0.09a 

96 3.15 
±

0.04b 

0.81 
±

0.04c 

7.76 ±
0.11a 

2.67 ±
0.02b 

88.3 
±

0.18a 

391.4 ±
0.05c 

120 3.16 
±

0.03b 

0.93 
±

0.04b 

7.80 ±
0.11a 

2.59 ±
0.10bc 

88.1 
±

0.07a 

392.0 ±
0.28b 

144 3.22 
±

0.02b 

0.89 
±

0.05bc 

7.70 ±
0.00a 

2.48 ±
0.05bc 

88.2 
±

0.07a 

391.6 ±
0.19bc 

168 3.26 
±

0.02b 

0.88 
±

0.01bc 

7.66 ±
0.11a 

2.43 ±
0.04c 

88.2 
±

0.07a 

391.4 ±
0.06c 

Mean values and standard deviation of triplicate replications. Means with no 
common letters within a row significantly differed (p ≤ 0.05). 
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(Table 1). Fermentation decreased the fat content of maize and com
posite flour of finger millet and maize Injera samples. Previous evidence 
also showed a decrease in the fat content of fermented millet flour (Afify 
et al., 2012; Ojokoh et al., 2015; Sade, 2009; Simwaka et al., 2017). This 
might be attributed to the use of lipids as an energy source or to lipolytic 
hydrolysis caused by lipase enzyme during fermentation (Adebiyi et al., 
2019; Adebo et al., 2022). 

The total carbohydrate content did not show any significant differ
ence in all Injera recipes with fermentation time, except Injera prepared 
from brown finger millet Injera. However, significant differences were 
observed in the total energy content of Injera samples in all recipes. 
There were also inconsistencies in the total energy values at different 
fermentation times. The result has shown that the addition of maize 
flour into composite flour increased the energy content of Injera. This 
might derive from the higher fat and protein content of maize. The total 
carbohydrate and gross energy content of our Injera samples are higher 
than those reported for spontaneously fermented Injera prepared from 
other cereals (Agza et al., 2018; Anberbir et al., 2023; Mihret & Bultosa, 
2017; Woldemariam et al., 2019; Yegrem et al., 2021). 

3.2. Antinutritional content of finger millet based fermented dough and 
Injera 

Antinutrients are chemical substances found in plants, referred to as 
“secondary metabolites”, having distinct biological effects based on the 
structure of certain components (Parul, 2014). They have an adverse 
effect on nutrient values, by lowering nutritional digestibility and 
mineral absorption (Singh & Sarita, 2018). Tables 2 and 3 present the 
effect of fermentation time on the phytate and condensed tannin content 
of fermented dough (feremented at room temperature i.e. 22 ◦C) and 
Injera, prepared from finger millet and finger millet-maize composite 
flour, respectively. The phytate and condensed tannin content of both 
fermented dough and Injera reduced substantially with fermentation 
time. 

The fermented dough flour of light brown finger millet (BF) in the 
first fermentation phase demonstrated a significant reduction of 46.8 % 
and 39.7 % of its phytate and condensed tannin content, respectively 
(Table 2). On the third day, the phytate and condensed tannin contents 
significantly increased (p < 0.05), possibly due to the newly added 
brown finger millet (BF) flour, while in the second fermentation phase, 
the phytate and condensed tannin contents decreased by 37.1 % and 
23.3 %, respectively. A similar trend was observed for the fermented 
dough flour of maize and other finger millet-maize composites. Despite 
different processing conditions, fermentation resulted in a reduction in 
the content of antinutritional components of our samples. 

Our findings are consistent with those of other studies. Elyas et al. 
(2002) found that natural fermentation of two varieties of pearl millet 
for 36 h reduced phytic acid by 50 % for both cultivars. Osman (2011) 
also reported that traditional fermentation of pearl millet for 24 h at 
30 ◦C decreased the phytic acid content significantly (from 647 to 311 
mg/100 g or 51.9 % reduction). However, Gabaza et al. (2018) stated 
that from four spontaneously fermented finger millet varieties, only 
white finger millet (WV2 variety) fermented for 36 h at 25–30 ◦C 
reduced its phytate content by 22 %, while other varieties increased it, 
suggesting that the trend differentiated among varieties. 

The fermentation process could cause a decline in the phytate con
tent, by increasing the activity of native or intrinsic phytase and mi
crobial phytase, thereby hydrolyzing insoluble organic complexes with 
minerals (Azeez et al., 2022; Makokha et al., 2002; Olukomaiya et al., 
2020; Osman, 2011; Sokrab et al., 2014). Phytate reduction in food is 
important, since it interferes with the availability of essential nutrients 
such as Fe, Zn, and Ca in the gastrointestinal tract of humans, reducing 
their bioavailability. Different studies (Fredlund et al., 2006; Frontela 
et al., 2011; Pires et al., 2023) also reported the adverse effect of phytate 
on calcium, iron, and zinc bioavailability. 

The condensed tannin content of our dough samples decreased with 

fermentation time. A decrease in the condensed tannin content of fer
mented flour is in agreement with other studies (Adebiyi et al., 2017; 
Taylor & Duodu, 2015). Specifically, Gabaza et al. (2018) reported a 
decrement of 33–53 % of condensed tannin in finger millet slurries 
subjected to spontaneous fermentation. The decrease in condensed 
tannin can be attributed to the higher activity of phytases, polyphenol 
oxidase, and tannin acyl hydrolases during processing (Samtiya et al., 
2020). Moreover, enzymes from microflora facilitate the breakdown of 
tannin-protein, tannic acid–starch, and tannin-iron complexes during 
fermentation, leading to the release of free nutrients which invariably 
enhance nutrient availability (Onweluzo & Nwabugwu, 2009). 

As shown in Table 2, blending maize with light brown finger millet 
resulted in a decrease in the phytate and condensed tannin content of 
fermented dough flour. This might be attributed to the higher anti
nutrient content of finger millet compared to that of maize. Incorpora
tion of maize flour to light brown finger millet flour in 2:1 ratio 

Table 2 
Effect of fermentation time on the antinutrient content (mg/100 g d.w.) of fer
mented dough.  

Fermentation time (h) Phytic acid (mg/100 g) Condensed Tannin (mg/100 g) 

Brown Finger millet (BF) dough 
0 824 ± 3.8a 248 ± 2.3a 

24 709 ± 5.4b 211 ± 1.7b 

48 520 ± 0.43c 150 ± 1.2c 

72 573 ± 1.3d 162 ± 3.4d 

96 440 ± 5.3e 112 ± 3.3e 

120 322 ± 3.8f 90 ± 2.4f 

144 266 ± 3.6g 73 ± 1.2g 

168 232 ± 5.6h 69 ± 0.69g  

Maize (M) dough 
0 432 ± 3.9a 38 ± 1.3a 

24 345 ± 6.4b 28 ± 1.3b 

48 259 ± 5.3c 19 ± 3.4c 

72 332 ± 2.6b 23 ± 4.0bc 

96 227 ± 2.0d 18 ± 2.6ec 

120 176 ± 2.4e 13 ± 1.4e 

144 116 ± 2.8f 11 ± 2.3e 

168 81 ± 6.7g 11 ± 2.6e  

1 Brown Finger millet: 1 Maize (BFM) dough 
0 419 ± 5.5 a 38 ± 1.3a 

24 334 ± 3.8b 30 ± 1.3b 

48 244 ± 1.7c 21 ± 2.3c 

72 473 ± 5.6d 127 ± 5.6d 

96 339 ± 1.8b 78 ± 2.8e 

120 213 ± 4.4e 53 ± 2.3f 

144 176 ± 3.5f 45 ± 1.3a 

168 158 ± 4.0g 31 ± 1.3b  

1 Brown Finger millet: 2 Maize (BF2M) dough 
0 597 ± 4.0a 122 ± 2.7a 

24 482 ± 4.1b 99 ± 1.4b 

48 328 ± 1.1c 62 ± 1.1c 

72 402 ± 8.7d 80 ± 3.4d 

96 261 ± 1.5e 53 ± 0.66e 

120 150 ± 7.0f 33 ± 1.2f 

144 131 ± 2.4g 22 ± 1.3g 

168 118 ± 2.6g 21 ± 2.3g  

White Finger millet (WF) dough 
0 634 ± 3.7a 233 ± 2.5a 

24 418 ± 2.9b 166 ± 1.2b 

48 279 ± 1.0c 83 ± 1.2c 

72 159 ± 3.2d 46 ± 3.3d 

96 127 ± 1.6e 38 ± 2.1e 

120 108 ± 0.23f 37 ± 2.3fe 

144 102 ± 2.5f 33 ± 1.3fe 

168 98 ± 4.4f 32 ± 1.3f 

Mean values and standard deviation of triplicate measurements. Means with no 
common letters within a row are significantly different (p ≤ 0.05). 
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respectively (BF2M), leads to a further decrease in the antinutrient 
content of the fermented dough. Fermentation led to a significant 
decrease in the phytate and condensed tannin content by 23.2 % and 
49.2 % respectively, in the first fermentation phase. However, the 
addition of blended flour on the third fermentation day resulted in a 
significant increment which decreased significantly in the second 
fermentation phase by 16.8 % and 60.5 %, respectively (Table 2). 
Likewise, the dough prepared from a 1:1 blending ratio of light brown 
finger millet to maize flour, BFM, also showed a significant reduction in 
phytate content with fermentation time. However, due to the incorpo
ration of light finger millet into maize thick dough on the third 
fermentation day, the phytate content increased significantly and sub
sequently gradually decreased during the second fermentation phase. 
Overall, the trend in Table 2 shows that, except for white finger millet 
dough, the phytate and condensed tannin contents of all fermented 
dough samples significantly decreased until the fermentation time of 48 
and 72 h, due to newly added flours, whereas the phytate content 
significantly increased and subsequently started to significantly degrade 
after 72 h fermentation time. 

Our findings are in line with the study of Sharma et al. (2017), who 
reported that mixing red and white finger millet flour (GPU 28 and KMR 
340, respectively) with refined wheat flour led to a significant increment 
in the phytate content of the blended flours by 12.5 % for wheat mixed 
with red finger millet and by 29.6 % for wheat mixed with white finger 
millet. According to Baye et al. (2014), the efficiency of phytate 
degradation varies, according to the type of cereals and fermentation 
conditions. Similarly, Herter-Aeberli et al. (2020) reported that the 
addition of 10 % whole wheat flour reduced the phytate content from 
0.76 to 0.24 g/100 g, being almost completely degraded when the 

amount of wheat flour increased up to 25 %. The reduction of phytate 
content during fermentation might be attributed to endogenous phytase 
activities of raw materials, as well as to processing conditions such as 
pH, which is known to modulate the activity of both plant and microbial 
phytases (Greiner & Konietzny, 2006). 

In the case of white finger millet (WF), the percentage of decline in 
the phytate content and condensed tannin following 7 days of fermen
tation was 73.77 % and 86.44 %, respectively, comparable to the values 
so far reported by several authors. These results were similar to those 
observed for the fermentation of finger millet (Azeez et al., 2022), pearl 
millet (Osman, 2011), sorghum and pearl millet (Onyango et al., 2013), 
sorghum and finger millet (Makokha et al., 2002) and corn (Sokrab 
et al., 2014). Our results showed that there is no significant decrement 
either of phytate content or of condensed tannin after a 96 h fermen
tation, possibly due to the maximum hydrolysis of the components 
occurring at this fermentation period. 

Considering finger millet varieties, the reduction in the phytate and 
condensed tannin content of fermented dough varied between light 
brown and white finger millet. Specifically, as fermentation time in
creases, a stronger decline was observed in white finger millet fermented 
dough flour than in light brown one. This difference might derive from 
the addition of a backslope or starter (Ersho) in the preparation of white 
finger millet dough and the incorporation of new flour on the third day 
of fermentation while preparing brown finger millet dough. The addi
tion of backslope (Ersho) during dough preparation is important in the 
hastening of the fermentation process, as it influences the microbial 
diversity of the fermented slurries, in addition to improving the flavor, 
structure, and stability of baked goods (Gänzle & Zheng, 2019; Karaman 
et al., 2018). Sharma and Sharma (2022) demonstrated that mixed 
strains of lactic acid bacteria fermentation of foxtail millet for 20 h at 
38 ◦C reduced phytate and condensed tannin content by 30.0 % and 
30.2 % respectively. Results in our study showed a higher percentage 
reduction (in the range of 62.2 %-84.6 % for phytate and 19.6 %-86.4 % 
for tannin) than those reported previously (Sakandar et al., 2019; 
Sharma & Sharma, 2022), possibly attributed to the relatively longer 
fermentation period. Azeez et al. (2022) also reported a 56.6 % reduc
tion in phytic acid by using dry yeast after 16 h fermentation of brown 
finger millet at 27 ◦C. Overall, we found that the reduction in phytate 
and condensed tannin content varies depending on variety, processing, 
and fermentation conditions. 

The phytate and condensed tannin contents of finger millet based 
Injera are shown in Table 3. There was a significant decrement (P <
0.05) in the phytate content of brown finger millet and maize Injera, as 
well as in the tannin content of the 1:1 finger millet and maize composite 
flour (BFM) Injera with an increase in fermentation time. Similarly, the 
phytate and condensed tannin content of Injera samples of the two blend 
types (1:1 finger millet and maize composite flour, BFM and 1:2 finger 
millet and maize composite flour, BF2M) showed a significant difference 
in all fermentation times except between 144 h and 168 h, while the 
tannin content of 1:1 finger millet and maize composite flour (BFM) 
significantly decreased with an increase in fermentation time. We 
observed that the combined effect of fermentation and cooking resulted 
in a decrease in the phytate and condensed tannin content of our Injera 
sample. This result is in line with a study by Gabaza et al. (2018), who 
reported a decrement of condensed tannin and total phenolic contents of 
finger millet porridge by 22.0–36.0 % and 0.6–40.7 %, respectively, 
following spontaneous and backslopped fermentation and cooking of 
finger millet varieties. Another study by Sharma et al. (2017) demon
strated that baking resulted in a significant reduction in the phytic acid 
content by 29.5 % for wheat flour, 20.9 % for red finger millet and wheat 
blend chapatti, and 19.9 % for white finger millet and wheat blend 
chapatti. Thus, apart from producing the desired flavor and taste, 
fermentation and cooking eliminate considerable amounts of phytic acid 
and condensed tannin in finger millet based Injera. 

Table 3 
Phytic acid and tannin content (mg/100 g d.w.) of finger millet based Injera.  

Fermentation time (h) Phytic acid (mg/100 g) Condensed Tannin(mg/100 g) 

Brown Finger millet (BF) Injera 
0 824 ± 3.8a 248 ± 2.3a 

96 417 ± 2.7b 109 ± 3.9b 

120 309 ± 4.0c 87 ± 1.3c 

144 259 ± 0.85d 70 ± 2.4d 

168 225 ± 0.43e 65 ± 2.5d  

Maize (M)Injera 
0 432 ± 3.9a 38 ± 1.3a 

96 215 ± 2.1b 17 ± 1.3b 

120 172 ± 1.7c 13 ± 3.4b 

144 114 ± 1.4d 11 ± 2.2b 

168 80 ± 1.5e 10 ± 1.3b  

1 Brown Finger millet: 1 Maize (BFM)Injera 
0 419 ± 4.6a 38 ± 1.3a 

96 317 ± 7.4b 75 ± 2.2b 

120 202 ± 1.8c 51 ± 1.3c 

144 172 ± 7.8d 42 ± 3.3a 

168 156 ± 4.3d 28 ± 2.2d  

1 Brown Finger millet: 2 Maize (BF2M) Injera 
0 597 ± 4.0a 122 ± 2.7a 

96 247 ± 3.4b 49 ± 2.2b 

120 145 ± 2.9c 32 ± 1.3c 

144 128 ± 0.42d 21 ± 3.4d 

168 116 ± 1.5d 20 ± 2.2d  

White Finger millet (WF) Injera 
0 634 ± 3.7a 233 ± 2.5a 

96 120 ± 2.5b 37 ± 2.5b 

120 104 ± 0.42c 33 ± 2.2b 

144 99 ± 1.5c 32 ± 1.3b 

168 95 ± 4.0c 32 ± 2.6b 

Mean values and standard deviation of triplicate replications. Means with no 
common letters within a row significantly different (p ≤ 0.05). 
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3.3. Proximate composition, phytate, and tannin content of fourth-day 
Injera samples 

Finger millet Injera or finger millet based Injera is usually consumed 
after fermentation for four days. We therefore compared the proximate 
composition, phytate, and tannin content of Injera prepared according to 
the different recipes outlined above (Table 4). The protein and fat 
content of Injera samples prepared from 1:2 of light brown finger millet 
and maize were higher than those prepared according to other recipes. 
Maize seems to contribute to the higher fat and protein content observed 
in Injera prepared using this specific ratio. However, the ash and crude 
fiber content of Injera prepared from 1:1 ratio of finger millet to maize 
composite flour were higher than Injera prepared from 1:2 ratio of finger 
millet to maize composite flour. Brown finger millet is assumed to 
contribute to the higher fiber and ash content recorded for this Injera 
sample. The fat content of white finger millet Injera is lower compared to 
that of light brown finger millet Injera. Conversely, the light brown 
finger millet Injera has a higher protein content. The total carbohydrate 
and energy content of Injera samples showed insignificant variation, 
except for the energy content between white finger millet and maize 
based Injera samples. The mean value of total carbohydrate and energy 
values of all Injera samples were in the range of 85.6–88.2 % and 
392–410 Kcal/100gm, respectively. A significant difference (P < 0.05) 
was observed in the phytate and tannin content of all Injera samples. 
High phytate and tannin content was observed in brown finger millet 
Injera. 

3.4. Ca, Fe and Zn content 

Ethiopia has significant problems with nutrient deficiencies, partic
ularly with regard to micronutrients such as iron, calcium and zinc 
(EPHI and UNICEF, 2016; Teshome et al., 2019). Table 5 presents the 
total Ca, Fe, and Zn content of Injera samples at different fermentation 
time. The unfermented flour of light brown finger millet (BF) contains 
the highest Fe and Ca content (4.58 mg/100 g dw and 372.66 mg/100 g 
dw, respectively) followed by white finger millet (WF) with higher Zn 
content. Except for white finger millet Injera, the iron, zinc, and calcium 
contents of the other Injera samples significantly increased (P < 0.05) 
with fermentation time. 

The iron content of Injera increased by 109.0 %, 102.3 %, 246.3 %, 
100.6 %, and 72.6 % for brown finger millet (BF), maize (M), 1:1 finger 
millet and maize composite flour (BFM), 1:2 millet and maize composite 
flour (BF2M), and white finger millet (WF), respectively, at 168 h in 
comparison with unfermented flour. These results are consistent with 
those of previous studies (Azeez et al., 2022; Jan et al., 2022; and Mudau 
et al., 2022) which reported an increase in the iron content of fermented 
finger millet flours. When compared to unfermented flours, the iron 
content in brown finger millet (BF), maize (M), 1:1 finger millet and 
maize composite flour (BFM), and 1:2 finger millet and maize composite 
flour (BF2M) Injera was considerably higher at 168 h of fermentation, 

while iron reached its highest level at 96 h of fermentation for Injera 
prepared from White Finger Millet (WF). A significant difference (P <
0.05) was observed in the iron content of Injera samples during different 
fermentation times. Specifically, for brown finger millet (BF) and 1:2 
finger millet and maize composite flour (BF2M), a significant difference 
was observed up to 144 h of fermentation. In the case of maize (M) and 
white finger millet (WF) Injera, a significant difference was observed up 
to 120 h of fermentation. Additionally, there was a significant difference 
in the iron content among all flour samples of 1:1 finger millet and maize 
composite flour (BFM). 

A similar observation was recorded for zinc. Although brown finger 
millet (BF) and white finger millet (WF) Injera had higher zinc contents 
(3.2 mg/100 g) than other Injera samples prepared at 168 h and 96 h of 

Table 4 
Proximate and antinutrient content of fourth-day Injera samples.  

Injera Ash (%) Crude Fat 
(%) 

Crude Protein 
(%) 

Crude Fiber 
(%) 

Total CHO 
(%) 

Energy (Kcal/ 
100 g) 

Phytic acid (mg/ 
100 g) 

Condensed Tannin(mg/ 
100 g) 

Brown Finger millet (BF) 3.21 ±
0.04a 

2.17 ±
0.08a 

8.05 ± 0.05ab 3.20 ± 0.02a 86.6 ±
0.15a 

398.0 ± 0.30ab 417 ± 2.7a 109 ± 3.9a 

Maize (M) 1.34 ±
0.04b 

2.71 ±
0.21b 

8.96 ± 0.00c 2.18 ± 0.17b 87.0 ±
0.41a 

408.1 ± 2.7b 215 ± 2.1b 17 ± 1.3b 

1 Brown Finger millet: 1 
Maize (BFM) 

2.31 ±
0.01c 

3.17 ±
0.05c 

8.49 ± 0.25bc 2.77 ± 0.08c 85.9 ±
0.30a 

407.3 ± 1.1b 317 ± 7.4c 76 ± 2.2c 

1 Brown Finger millet: 2 
Maize (BF2M) 

2.07 ±
0.06d 

3.72 ±
0.06d 

9.09 ± 0.35c 2.21 ± 0.03b 85.6 ± 2.2a 407.7 ± 10b 247 ± 3.4d 49 ± 2.2d 

White Finger millet (WF) 3.15 ±
0.04a 

0.81 ±
0.04e 

7.76 ± 0.11a 2.67 ± 0.02c 88.3 ±
0.18a 

391.4 ± 0.05a 120 ± 2.5e 37 ± 2.5e 

Mean values and standard deviation of triplicate measurements. Means with no common letters within a row are significantly different (p ≤ 0.05). 

Table 5 
Ca, Fe and Zn content (in mg/100 g of d.w.) of finger millet based Injera prepared 
at different fermentation times.  

Fermentation time (h) Fe Zn Ca 

Brown Finger millet (BF) Injera 
0 4.58 ± 0.26a 2.13 ± 0.05a 373 ± 5a 

96 6.67 ± 0.09b 2.67 ± 0.02b 400 ± 5b 

120 8.06 ± 0.48c 2.99 ± 0.03c 435 ± 6c 

144 9.50 ± 0.28d 3.18 ± 0.02d 444 ± 3c 

168 9.57 ± 0.12d 3.20 ± 0.07d 448 ± 7c  

Maize (M)Injera 
0 2.14 ± 0.01a 1.58 ± 0.02a 18.4 ± 0.5a 

96 3.16 ± 0.05b 1.95 ± 0.07b 28.1 ± 0.2b 

120 4.13 ± 0.26c 2.30 ± 0.07c 32.5 ± 0.8c 

144 4.46 ± 0.18c 2.33 ± 0.02c 31.8 ± 0.2c 

168 4.33 ± 0.14c 2.35 ± 0.09c 32.3 ± 0.7c  

1 Brown Finger millet: 1 Maize (BFM)Injera 
0 2.14 ± 0.10a 1.61 ± 0.01a 18.5 ± 0.3a 

96 4.53 ± 0.21b 2.16 ± 0.08b 244 ± 3b 

120 5.67 ± 0.04c 2.52 ± 0.08c 265 ± 3c 

144 6.36 ± 0.18d 2.87 ± 0.03d 287 ± 2d 

168 7.41 ± 0.10e 2.94 ± 0.12d 291 ± 3d  

1 Brown Finger millet: 2 Maize (BF2M) Injera 
0 3.17 ± 0.23a 1.73 ± 0.02a 129 ± 1a 

96 4.08 ± 0.21b 2.24 ± 0.05b 173 ± 2b 

120 5.00 ± 0.03c 2.50 ± 0.01c 184 ± 1c 

144 5.96 ± 0.24d 2.69 ± 0.02d 189 ± 3c 

168 6.36 ± 0.23d 2.73 ± 0.01d 193 ± 3c  

White Finger millet (WF) Injera 
0 4.20 ± 0.15a 2.29 ± 0.06a 332 ± 4a 

96 8.45 ± 0.12b 3.20 ± 0.04b 396 ± 4b 

120 8.01 ± 0.02bc 2.91 ± 0.03c 392 ± 7b 

144 7.64 ± 0.16c 2.71 ± 0.11cd 385 ± 7b 

168 7.25 ± 0.14c 2.64 ± 0.05d 377 ± 8b 

Mean values and standard deviation of duplicate replications. Means with no 
common letters within a row significantly differed (p ≤ 0.05). 
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fermentation time respectively, the content was within the range 
commonly found in cereals. The zinc content of brown finger millet (BF), 
1:1 finger millet and maize composite flour (BFM), and 1:2 finger millet 
and maize composite flour (BF2M) Injera samples showed a statistically 
significant increase among Injera samples up to the fermentation time of 
144 h, while in maize and white finger millet Injera samples, a statisti
cally significant increase was observed up to the fermentation time of 
120 h. The zinc content of samples in this study is in line with previous 
findings (Ahmed et al., 2020; Anberbir et al., 2023). 

The highest calcium content was recorded for brown finger millet 
Injera (448 mg/100 g). The fact that relatively lower iron, zinc, and 
calcium contents were observed in maize Injera suggests that the addi
tion of maize leads to a decrease in the mineral content of blended flour. 
Fermentation time affected the calcium content of Injera samples pre
pared at different fermentation times. This result is in line with previous 
research (Azeez et al., 2022; Mudau et al., 2022), reporting an increase 
in the calcium content of solid-state fermented finger millet flours. The 
results further show a significant difference in the calcium content 
among the samples of 144 h fermented Injera for 1:1 finger millet and 
maize composite flour (BFM) and of 120 h fermented Injera for brown 
finger millet (BF), maize (M), and 1:2 finger millet and maize composite 
flour (BF2M). However, in the case of white finger millet (WF), a sig
nificant difference is shown between the unfermented flour and the 96 h 
fermented Injera. 

Generally, the mineral content of Injera samples prepared from light 
brown finger millet, maize, and blended flour showed an increment with 
fermentation time. This finding agrees with earlier studies of Azeez et al. 
(2022) and Mudau et al. (2022), who reported an increment of calcium, 
iron, and zinc content of fermented finger millet by 5.3–8.7 %, 57.4–117 
%, and 12.1–76.9 % respectively. Adebiyi et al. (2017) also showed that 
the mineral content increases when pearl millet is fermented and malted 
to produce flour and the resultant biscuit. Another study by Balli et al. 
(2023) demonstrated that fermentation increased the iron, calcium, and 
phosphorus content of fermented pearl millet. The increase in the min
eral content of Injera samples compared with those of unfermented flour 
might be due to the loss of dry matter during fermentation as microbes 
degrade carbohydrates, proteins, and antinutritional factors (Gabaza 

et al., 2018a; Kruger et al., 2013; Nkhata et al., 2018). Enzymatic ac
tivities occurring during fermentation, facilitate the decomposition of 
this insoluble complex (Srivastava et al., 2020). 

3.5. Bioaccessibility of iron, zinc, and calcium from finger millet based 
Injera 

The in vitro digestibility method was used to estimate the bio
accessibility of Fe, Zn, and Ca from our Injera samples. The bio
accessibility of iron, zinc, and calcium from unfermented flour and 
finger millet based Injera samples, as determined by the in vitro di
gestibility method, is presented in Fig. 5. 

Fermentation significantly (P < 0.05) affected the bioaccessibility of 
iron, zinc, and calcium in all samples. Higher bioaccessible iron and zinc 
values were observed for unfermented maize flour (12.8 and 18.1 %, 
respectively), while higher bioaccessible calcium (48.5 %) was observed 
for unfermented white finger millet flour (WF). After fermentation, the 
bioaccessibile iron, zinc, and calcium increased significantly in the 
range 15.4–40 %, 26.8–50.8 %, and 60.9–88.5 %, respectively, for light 
brown finger millet, the blended, and maize Injera. Such increased 
bioaccessibility, however, was not evident in the case of white finger 
millet Injera; instead, there was a significant increment at 96 h 
fermentation time and a slight decrement at 168 h. The fact that 
fermentation affected the iron, zinc, and calcium bioaccessibility in this 
study may be due to a reduction in the phytate and tannin contents. 
Fermentation is one of the most effective methods used to degrade the 
antinutrient and mineral complexes by enzymes that are derived from 
naturally occurring microflora; making minerals free, easily assessable, 
and bioavailable (Nkhata et al., 2018; Pranoto et al., 2013). Some re
searchers also reported a significant increment of iron, zinc, and calcium 
bioaccessibility due to fermentation (Greffeuille et al., 2011; Hemalatha 
et al., 2007; Kruger et al., 2013; Mamiro et al., 2001; Proulx & Reddy, 
2007), while others found no significant effect (Baye et al., 2014; Gabaza 
et al., 2018b) or a reduction (Hemalatha et al., 2007). 

Fig. 5. Bioaccessibile iron, zinc, and calcium from finger millet based Injera at different fermentation times. Error bars represent mean ± SD.  
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4. Conclusion 

This study showed that fermentation of finger millet in the prepa
ration of finger millet based Injera effectively reduces antinutritional 
compounds. Consequently, this process leads to improvements in 
nutritional components and enhances mineral bioaccessibility. The dif
ferences in the composition of the flour blends used to prepare Injera 
influence fermentation patterns, ultimately impacting the final compo
sition of the fermented dough and Injera. Notably, substantial changes 
are observed in protein, fat, mineral, phytate, and condensed tannin 
content. Furthermore, fermentation plays a pivotal role in reducing the 
phytate and condensed tannin content of both fermented flour and 
Injera. The most significant effects are observed when fermenting white 
finger millet flour with sourdough, particularly as fermentation time 
increases. This results in an enhanced proximate composition and 
mineral bioaccessibility of both fermented finger millet and Injera along 
with reduced phytate and condensed tannin content. The findings of this 
study suggest that fermenting finger millet flour shows promising results 
in improving its nutritional value to develop different food products. 
These insights provide valuable guidance for future investigations into 
various bioprocessing techniques, aiming to enhance the utilization of 
finger millet grains, whether for home or industry-scale Injera 
production. 
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